B.Sc. (Hons.) Computer Science Operating System Question Bank Unique Paper Code: 32341302

S.No.	Question
1	Define Operating Systems and discuss its role from different perspectives.
2	Explain fundamental difference between i) N/w OS and distributed OS ii) web based
	and embedded computing.
3	What do you mean by cooperating process? Describe its four advantages.
4	What are the different categories of system programs? Explain.
5	List out different services of Operating Systems and explain each service.
6	Explain the concept of virtual machines. Bring out its advantages.
7	Distinguish among following terminologies i) Multiprogramming systems ii) Multitasking Systems iii) Multiprocessor systems.
8	What is distributed operating system? What are the advantages of distributed operating system?
9	What are system calls? Explain different categories of system calls with example?
10	What are the 3 main purposes of an Operating System?
11	Explain the concept of virtual machines.
12	Explain the distinguishing features of i). Real time system ii) Multiprocessor system
13	What is the purpose of command interpreter? Why is it usually separate from the Kernel?
14	What is an Operating System? Explain considering different possible views.
15	What is operating system? What are functions of operating system?
16	What are multiprocessor systems? Give advantages.
17	What is the main difficulty that a programmer must overcome in writing an operating system for real time environment?
18	Define spooling and the need for it. Explain its working with necessary diagrams.
19	Explain the following terms and their working with diagram a) Buffering b) Spooling c) Time sharing d) Distributed system e) Real-time
20	Compare tightly coupled systems with loosely coupled systems.
21	Describe differences between symmetric and asymmetric multiprocessing. What are three advantages and one disadvantage of multiprocessor systems?
22	Explain distinguished features of i) Time Sharing System ii) Parallel Processing
23	Write a brief note on different operating system structures
24	Explain different sub components of an operating system.
25	Bring out the requirements of i) Real time operating systems (ii) Distributed operating systems
26	Justify the statement "Operating System can be viewed as a government, resource allocator and a control program".

27	Define essential properties of the following types of Operating system: i) Batch operating system
	ii) Interactive operating system
	iii) Time sharing operating system
	iv) Real time operating system
	v) Distributed operating system
	Distinguish assess the fellowing townsingle size accepiated with the amounting quature
28	Distinguish among the following terminologies associated with the operating system and explain each of them in detail.
	Multiprogramming systems, Multitasking systems, Multiprocessor systems.
29	Define a virtual machine (VM). With a neat diagram, explain the working of a VM. What are the benefits of a VM?
30	Explain the 'graceful degradation' and 'fault tolerant' in a multiprocessor system.
31	Write and explain the sequence of system calls for copying a file to another (new) file.
32	What are system calls? Explain the different categories of the system calls

S.No.	Question	
1	What do you mean by PCB? Where is it used? What are its contents? Explain.	
2	Explain direct and indirect communications of message passing systems.	
3	Explain the difference between long term and short term and medium term schedulers	
4	What is a process? Draw and explain process state diagram	
5	Define IPC. What are different methods used for logical implementations of message passing Systems.	
6	Discuss common ways of establishing relationship between user and kernel thread.	
7	Explain multithreading models.	
8	List out services provided by the Operating Systems?	
9	What are client server systems & Peer-to-Peer systems?	
10	What is the purpose of the system calls & system programs?	
11	Explain the layered approach of the operating system	
12	Describe process states with the help of process transition diagram	
13	Give difference between Job-scheduling & CPU-scheduling.	
14	What is the main difficulty that a programmer must overcome in writing an operating	
	System for real time environment?	
15		
	Give difference between Job-scheduling & CPU-scheduling.	
16	Distinguish between	
	i) Process and Program	
	ii) Multiprogramming and multiprocessing	
	iii) Job scheduling and CPU scheduling	
17	What are the five major activities of an operating system in regard to file management	

18	What are the five major activities of an operating system in regard to process management?	
19	What are the three major activities of an operating system in regard memory management?	
20	What are the three major activities of an operating system in regard to secondary storage management	
21	What is the purpose of command interpreter? Why is it usually separate from kernel?	
22	What are different differences between user level threads & Kernel supported threads?	
23	What is Scheduler? What is a dispatcher?	
24	Give the information that is kept in process control block?	
	Unit 3	
1	What are threads?	
2	What are semaphores? Explain two primitive semaphore operations. What are its advantages?	
3	Explain three requirements that a solution to critical–section problem must satisfy.	
4	Explain solution to producer-consumer problem using semaphores	
5	State dining philosopher's problem and give a solution using semaphores. Write structure of philosopher.	
6	5. What do you mean by binary semaphore and counting semaphore? With C struct, explain implementation of wait () and signal.	
7	What is synchronization? Explain its hardware.	
8	What are semaphores? Explain solution to producer-consumer problem using semaphores	
9	Write short note on CPU scheduling criteria.	
10	Explain different types of CPU Schedulers.	
11	i) Preemptive and non preemptive scheduling	
	ii) I/O bound and CPU bound	
	iii) Scheduler and dispatcher	
12	Differentiate Pre-emptive and Non-preemptive scheduling giving the application of each of them.	
13	What is the criterion used to select the time quantum in case of round-robin	
	scheduling algorithm? Explain it with a suitable example.	
14	Explain the concept of 'process'. also describe the contents of a process control	
	block(PCB)	
15	Define the actions taken by a kernel to context switch:	
	a. Among threads	
	b. Among processes	
16	What are co-operating processes? Describe the mechanism of inter process	
	communication using shared memory in a producer-consumer problem	
17	Explain how process are created and terminated.	
18	For the following set of process find the average waiting time using Gantt chart	
	Tor the following set of process find the average waiting time using dantit chart	

	for		
	i> SJF		
	ii> Priority scheduling process		
	Burst time Pri		
	p1	5	5
	p2	3	4
	p3	8	3
	p4	2	1
	p5	_ 1	2
	•	order p2, p1, p4, p3 and p5.	_
19	The process has arrived in the order p2, p1, p4, p3 and p5. What is the difference between a preemptive and non-preemptive scheduling		
		uling algorithm. Find the average	-
	-	ne processes given in the table be	
	Process CPU burst time(in m	_	
	P1 24	-,	
	P2 3		
	P3 3		
20		h burst time given in millisecond	ls:
		rity scheduling	
	process Burst t	•	
	p1 10	3	
	p2 1	1	
	p3 2	3	
	p4 1	4	
	p5 5	2	
	-	order p1, p2, p3, p4, p5 all at tim	e 0.
	a. Draw Gantt charts for the execution of these processes using		
	FCFS, SJF, a nonpreemptive priority and RR (quantum=1)		
	scheduling.		
	b. What is the turnaround time	and waiting time of each	
	process for each of the scheduling algorithm.		
21	•		Mhat maior
	What 2 advantages do threads have over multiple processes? What major disadvantages do they have? Suggest one application that would benefit from the		
	use	aggest one application that wou	id beliefft from the
	of threads.		
22		ve for processing at the times in	dicated each inh will
	Suppose the following jobs arrive for processing at the times indicated, each job will run the listed amount of time.		
		ırst time	
	1 0.0 8	inst time	
	2 0.4 4		
	3 1.0 1		
		illustrating the execution of th	nese
	ij Give a Gante chare	mastrating the execution of th	1000

	jobs using the non preemptive FCFS and SJF scheduling algorithms.		
	ii) what is turn around time and wait time of each job for the above algorithms?		
	iii) compute average turn around time if the CPU is left		
	idle for the first 1 unit and then SJF scheduling is used.(job q and job 2 will wait during this time)`		
23	·	<u>_</u>	their arrival and burst times as shown
	Process A.	-	
	P0 0	10HR	
	P1 0	05HR	
	P2 1	02HR	
	P3 2	01HR	
	Compute the turi	n around time and waiting ti	me of each job using the following
	scheduling algori	thms.	
24	For the following	g set of processes, find the a	verage waiting time &
	average turn arou	and time using GANTT Chart	for
	I > FCA		
	II> SJF pre	•	
		n-preemptive.	
	Process	Arrival time (in sec)	Burst Time(in sec)
	P1 P2	0 1	4
	P3	2	2 5
	P4	3	4
25			outer centre at almost at the same
	1	•	.0,6,2,4 and 8 minutes. Their priorities
	•	_	ne highest priority. For each of the
			e turn around time of each process and
	waiting time of e	ach process. Ignore process	switching overhead. Mention which
	algorithm results	in minimal average waiting	time.
	1.	Round Robin	
	2.	Priority scheduling	
	3.	First come first served	
	4.	Shortest job first.	sing and each ich gots
	-	e that system is multiproces ne CPU.(time quantum 2 min	
		sume that only one job runs	
		are completely CPU bound.	, at a time, until it
L	,	- 1 /	

26	Consider the following set of rocesses, with the len of CPU burst in milliseconds.		
	Process PI P2 P3 P4 P5		
	Arrival time 00 02 03 06 30		
	Burst time 10 12 14 16 05		
	Draw a Gantt chart that illustrates the execution of these processes using the		
	preemptive shortest job first (SJF) algorithm. Hence find the average waiting time.		
	Draw a Gantt chart that illustrate the execution of these processes using		
	preemptive priority scheduling algorithm. Given priority of each process is PI = 4,		
	P2=3, P3=5, P4= 1 and P5= 1. Also find the average waiting time		
27	What are semaphores? Explain how it can be used to implement mutual exclusion		
28	Explain the terms critical section and mutual exclusion.		
29	What is critical section? What requirement should be satisfied for a solution to the		
	critical section problem?		
30	Explain the readers/writers problem		
31	What is the term busy waiting? What other kinds of waiting are there in an OS? Can		
	busy waiting be avoided altogether? Explain.		
32	Describe the Bounded - buffer problem and give a solution for the same using		
	semaphores. Write the structure of producer and consumer processes.		
33	What is critical section problem and what are the requirements that need to be		
	satisfied by any solution to critical section problem? Give a solution to a 2 process		
	critical section problem.		

UNIT 4

1	Why is deadlock state more critical than starvation? Describe resource allocation	
	graph with a deadlock, with a cycle but no deadlock.	
2	What are two options for breaking deadlock?	
3	Describe necessary conditions for a deadlock situation to arise.	
4	Explain different methods to handle deadlocks.	
5	Explain the resource allocation graph	
6	Explain the methods for deadlock prevention	
7	Given 3 processes A,B and C, three resources x,y and z and following events,	
	a. A requests x ii) A requests y iii) B requests y iv) B requests z	
	v) C requests z vi) C requests x vii) C requests y	
	Assume that requested resources should always be allocated to the request	
	process if it is available. Draw the resource allocation graph for the sequences.	
	And also mention whether it is a deadlock? If it is, how to recover the deadlock.	
8	What is deadlock? Explain the necessary conditions for its occurrence.	

1	What is paging and swapping?	
2	With a diagram discuss the steps involved in handling a page fault.	
3	What is address binding? Explain the concept of dynamic relocation of addresses.	
4	Define external fragmentation. What are the causes for external fragmentation?	
5	What is paging? Explain the paging hardware?	
6	Memory partitions of 100kb,500 kb,200 kb,300kb,600 kb are available how would	

	best ,worst, first fit algorithm to place processes 212,417,112,426 in order. Which	
	is the best algorithm?	
<u>7</u> 8	Differentiate between internal and external fragmentation.	
8	Consider the reference stream 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6. How many page faults while using FCFS and LRU using 2 frames?	
9	What are the methods of handling the page faults?	
10	What is thrashing? What are the causes for thrashing?	
11	What is virtual memory? Explain Suppose we have a demand paged memory.	
	The page table is held in registers. it takes 8ms to service a page fault if an empty	
	page is available or the replaced page is not modified, and 20ms if the replaced	
	page is modified. memory access time is 100ns. Assume that the page to be	
	replaced is modified 70% of the time. what is the maximum acceptable page	
	fault rate for an effective access time of no more than 200ns?	
12	What is demand paging? Explain	
13	What is segmentation? Explain. what is demand segmentation?	
14	What are the different access methods? Explain.	
15	Explain the difference between Physical and logical address	
16	Explain with neat diagram internal and external fragmentation.	
17	Describe the action taken by the operating system when a page fault occurs.	
18	Write short notes on swap space management.	
19	What is dynamic storage allocation problem? Mention the names of different	
	methods used to solve the above problem	
20	Consider a logical address space of 8 pages of 1024 words each, mapped on to a	
	physical memory of 32 frames.	
	how many bits are there in the logical address?	
	How many bits are there in the physical address?	
21	Explain in detail the implementation of paging	
22	What is fragmentation? Explain its types and disadvantages	
23	Write a note on file types and file structures	
24	What is virtual memory and give its advantages	
25	Explain the tem locality of reference and elaborate on its usefulness in	
	presenting thrashing.	
26	List the operations that can be performed on directory	
27	What is page fault and how it is handled?	
28	Describe the SSTF disk scheduling algorithm using the following data. The dist	
	head is	
	initially at position-cylinder 53.the cylinder sequence of requests is 98, 183, 37,	
	122,	
	14, 124, 65. 67. find the total head movement.	
29	Describe the LRU page replacement algorithm, assuming there are 3 frames and	
	the	
	page reference string is	
	70120304230321201701	

1		
	Find the number of page faults.	
30	Explain with the help of supporting diagram how TLB improves the performance	
	of a demand paging system.	
31	Differentiate between the following	
	a) Paging and Segmentation b) Page table and segment table	
32	Explain any two page replacement algorithms	
33	Explain the best fit, first fit and worst fit algorithm	
34	Discuss the following page replacement algorithm with an example.	
	i> Optimal ii>LRU	
35	Differentiate between global and local replacement algorithms	
36	Consider the following page reference string	
	1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6	
	Find out the number of page faults if there are 4 page frames, using the following	
	page replacement algorithm i) LRU ii) FIFO iii) Optimal	
37	Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. the drive	
	currently services a request at cylinder 143, and the previous request was at	
	cylinder 125. the queue of pending request in FIFO order is	
	86,1470,913,1774,948,1509,1022,1750,130 Starting from the current position,	
	what is the total distance(in cylinders) that the disk arm moves to satisfy all	
	pending requests, for each of the following algorithms i)FCFS ii) SSFT iii) SCAN iv)	
	LOOK v) C-SCAN.	
38	Explain segmented memory management	
39	What are the different disk scheduling algorithms explain	
40	Explain paging scheme of memory management. What hardware support is	
	needed for its implementation?	
41	The queue of requests in FIFO is 86,147,91,177,94,150,102,175,130 What is the	
	total head movement needed to satisfy the requests for the following Scheduling	
	algorithms FCFS, SJF, SCAN, LOOK, C-SCAN	
42	Differentiate between protection and security in file system. How they are	
	implemented?	
43	Explain the following i) file types ii) file operation iii) file attributes.	
44	Explain the method used for implementing directories.	
45	Describe various file access methods.	
46	Explain file system mounting operation.	
47 48	Mention the different file attributes and file types.	
49	How free space is managed? Explain. What are the three methods for allocating disk space? Explain.	
50	Discuss the following page replacement algorithm with an example	
	i) Optimal ii) LRU	
51	Name the different file allocation methods. Explain the linked allocation of file	
	implementation with merits and demerits.	
52	What is disk scheduling? Explain FCFS and SCAN disk scheduling algorithms.	
53	The available space list of a computer memory is specified as follows:	
	The available space list of a computer memory is specified as follows.	

	Start address block address in words 100 50 200 150 450 600 1200 400 Determine the available space list after allocating the space for the stream of		
	requests consisting of the following block sizes:		
	25,100,250,200,100,150		
	Use i) FIRST FIT		
	ii) BEST FIT and iii) WORST FIT algorithms.		
54	A virtual memory system has the		
	following specification: Size of		
	the virtual address space=64k		
	Size of the physical address space=4k		
	Page size=512		
	Virtual page# physical frame#		
	0 0		
	3 1		
	7 2		
	3		
	10 4		
	12 5		
	30 6 31 7		
	i)find all the virtual addresses that will generate a page fault compute the main memory addresses for the following virtual addresses.		
	24,3784,10250,30780		
55	A process references 5 pages A, B , C, D, E in the following order		
	A, B, C, D, A, E, B, C, E, D		
	Assuming that the replacement algorithm is LRU and FIFO, find out the number		
	of page faults during the sequence of references, starting with an empty main		
	memory With 3 frames.		
56	Suppose that the head of moving head disk with 200 tracks numbered 0 to 199		
	is currently serving the request at track 143 and has just finished a request at		
	track 125. If the queue request is kept in FIFO order, 86, 147, 91, 177, 94, 150,		
	102, 175, 130. What is the total head movement to satisfy these requests for i) FCFS II) SSTF disk scheduling algorithm.		
57	What do you mean by a address binding? Explain with the necessary steps, the		
	binding Of instructions and data to memory addresses.		
58	What do you mean by a copy-on-write? Where is it used? Explain in brief.		
59	Consider the following page reference string 7,0, 1,2,0,3,0,4,2,3,0,3,2, 1,2,0, 1, 7,		

	0, 1. How many page faults would occur for FIFO page replacement algorithm, assuming three frames?
60	Given memory partitions of 100 K, 500 K, 200 K, 300 K and 600 K (in order) how Would each of the first fit, best fit and worst fit algorithms work place processes of 212 K, 417K, 112 K and 426 K (in order)? Which algorithm makes the most efficient use of memory?
61	Explain the following disk scheduling algorithm with examples. i)SSTF ii) SCAN iii)LOOK Comment on the selection of these scheduling methods.

1	Describe the access matrix model used for protection purpose.
2	Explain various disk scheduling algorithms?
3	Explain the access matrix structure employed in protection domain?
4	What are protection goals and principles?
5	Differentiate between mechanism and policy.
6	Write a short note on Revocation of access rights.
7	Explain the terms 'WORMS' and 'VIRUSES' with reference to system threats
8	Briefly explain the various kinds of program threats and system threats.
9	Explain different methods used to solve the problem of security at the operating
	system level